

Kaiser Foundation Health Plan of Washington

Clinical Review Criteria Intraperitoneal Hyperthermic Chemotherapy (IPHC)

- Hyperthermic Intraperitoneal Chemotherapy (HIPEC)
- Intraoperative Chemo Hyperthermic Peritoneal Perfusion (CHPP)
- Intraperitoneal Hyperthermic Chemoperfusion (IHCP)

NOTICE: Kaiser Foundation Health Plan of Washington and Kaiser Foundation Health Plan of Washington Options, Inc. (Kaiser Permanente) provide these Clinical Review Criteria for internal use by their members and health care providers. The Clinical Review Criteria only apply to Kaiser Foundation Health Plan of Washington and Kaiser Foundation Health Plan of Washington Options, Inc. Use of the Clinical Review Criteria or any Kaiser Permanente entity name, logo, trade name, trademark, or service mark for marketing or publicity purposes, including on any website, or in any press release or promotional material, is strictly prohibited.

Kaiser Permanente Clinical Review Criteria are developed to assist in administering plan benefits. These criteria neither offer medical advice nor guarantee coverage. Kaiser Permanente reserves the exclusive right to modify, revoke, suspend or change any or all of these Clinical Review Criteria, at Kaiser Permanente's sole discretion, at any time, with or without notice. **Member contracts differ in health plan benefits. Always consult the patient's Evidence of Coverage or call Kaiser Permanente Member Services at 1-888-901-4636 (TTY 711), Monday through Friday, 8 a.m. to 5 p.m. to determine coverage for a specific medical service.**

Criteria

For Medicare Members

Source	Policy
CMS Coverage Manuals	None
National Coverage Determinations (NCD)	Hyperthermia for Treatment of Cancer (110.1) *Per NCD: Covered in connection with radiation therapy for certain types of malignancies, <u>not covered</u> in connection with chemotherapy
Local Coverage Determinations (LCD)	None

For Non-Medicare Members

Service	Criteria Used
Cytoreductive Surgery	Cytoreductive surgery and perioperative hyperthermic intraperitoneal chemotherapy may be considered medically
Perioperative Hyperthermic Intraperitoneal Chemotherapy	 necessary for the treatment of: pseudomyxoma peritonei diffuse malignant peritoneal mesothelioma ovarian cancer Cytoreductive surgery and perioperative hyperthermic intraperitoneal chemotherapy is considered investigational for: peritoneal carcinomatosis from colorectal cancer, gastric cancer, or endometrial cancer; all other indications, including goblet cell tumors of the appendix.
Intraperitoneal chemotherapy without hyperthermic methodology	Intraperitoneal chemotherapy without hyperthermic methodology is considered standard therapy and is not subject for review and is covered.

If requesting this service, please send the following documentation to support medical necessity:

Last 6 months of clinical notes from requesting provider &/or specialist

The following information was used in the development of this document and is provided as background only. It is provided for historical purposes and does not necessarily reflect the most current published literature. When significant new articles are published that impact treatment option, Kaiser Permanente will review as needed. This information is not to be used as coverage criteria. Please only refer to the criteria listed above for coverage determinations.

Background

Colon Cancer

In the United States, approximately 108,070 patients are diagnosed with colon cancer (CRC) per year, and between 10-30% of these patients will develop peritoneal carcinomatosis (PC) at some point after their initial diagnosis. PC is characterized by intraperitoneal spread of tumor nodules in the peritoneum which may occur as a result of growth of the tumor and its invasion through the serosal lining of the bowel lumen, or as result of iatrogenic manipulation during surgical procedures. PC of colorectal origin has poor survival and is the second most frequent cause of death in patients with colorectal cancer (CRC), after metastatic liver disease. It has always been regarded as a terminal condition and was commonly treated only with palliative therapies (Franko 2012, Macri 2010, Ripley 2010, Chua 2012).

Over the last two decades, significant advances made in the field of cytotoxic chemotherapy and biological agents have changed the treatment of PC from a palliative to a potentially curative approach. Modern chemotherapeutic regimens have increased the response rate and median survival of patients with PC. However, few patients experience long-term survival with chemotherapy alone. In the 1980s a multimodal technique was developed to manage PC based on cytoreduction of the primary tumor, peritonectomy, and hyperthermic antiblastic peritoneal perfusion (HIPEC). Theoretically cytoreductive surgery (CRS) treats the macroscopic residual disease and intraperitoneal (IP) chemotherapy treats the microscopic residual disease. IP chemotherapy is based on the principle that a high concentration of chemotherapy within the abdominal cavity will kill the tumor cells on the surface with less diffusion into the tissues and thus are less toxicity. Hyperthermia with IP chemotherapy optimizes the process as heat has direct cytotoxic effects on cancer cells and increases the cytoactivity and penetration of certain cytotoxic drugs (Verwaal 2008, Macri 2010, Ripley 2010, Vaira 2010, Glehen 2010, Mizumato 2012, Chua 2012, Miceli 2012).

HIPEC is achieved by the intraperitoneal administration of a large volume of chemotherapeutic agents in a carrier solution through an open or closed technique. It involves the placement of one inflow and three outflow catheters in the abdominal cavity after the cytoreduction surgery. The cytotoxic agent is applied through the inflow drainage using a roller pump and heat exchanger in a closed system that allows perfusion circulation. The intraperitoneal temperature should reach 41-42oC and is monitored by two sensors placed in the inflow catheter and in the Douglas pouch. At the end of the procedure the solution is drained, and the abdominal wall is closed. There is no standardized procedure for HIPEC and there are variations between the centers in the combinations and/ or concentrations for the cytotoxic agents used, as well as the intraabdominal temperature and duration of the treatment which ranges from 30 minutes to 2 hours depending on the protocol of the drug used. The combination therapy of cytoreductive surgery and HIPEC is complex, has a steep learning curve, and is associated with significant morbidity and mortality. Preoperative selection of patients to achieve complete cytoreduction plays a crucial role for the success of therapy regarding the clinical and ontological outcomes as well as the patient quality of life (Glockzin 2009, Mizumato 2012).

There is controversy around the use of cytoreduction therapy and HIPEC for peritoneal surface disease from CRC, and the procedure is not widely accepted despite the Consensus Statement (issued by representatives from the major Peritoneal Surface Malignancy Centers from around the world) on the role of cytoreductive surgery and HIPEC in the management of peritoneal surface malignancies of colonic origin (Esquivel 2007).

Ovarian Cancer

Ovarian cancer is the fifth leading cause of death in women in the US and the most common cause of death from gynecological cancer in the Western World. It was estimated that around 22,280 women will be diagnosed with ovarian cancer and that 15,500 women will die of the disease in the US in 2012. Approximately two thirds of the women are diagnosed at an advanced stage due to the nonspecific nature of the presenting symptoms of ovarian cancer and its high tendency for early peritoneal spread. Peritoneal carcinomatosis occurs through exfoliation of malignant cells into the peritoneal fluid and their dissemination along the abdominal and pelvic peritoneum. Traditionally these patients with extensive peritoneal carcinomatosis were often labeled as having terminal disease and were only given palliative therapy with no curative intent (Chua 2009, Spiliotis 2011, Chan 2012, de Bree E 2012, Mulier 2012, Siegal 2012, Tentes 2012).

The standard therapy for patients with ovarian cancer is maximal cytoreductive surgery (CRS) followed by systemic chemotherapy with a platinum-based agent and a taxane combination. Ovarian cancer is one of the

most chemosensitive tumors, and its response to this initial therapy is high, but the disease often recurs, mostly locoregionally, involving the peritoneum and adjacent intra-abdominal organs. The sensitivity of epithelial ovarian cancer to chemotherapy and its tendency to remain confined to the peritoneal cavity through much of its natural history, have led the researchers to investigate regional treatment such as intraperitoneal (IP) administration of chemotherapy (IPC). The theoretical benefits include the achievement of a high drug concentration in the peritoneal cavity without the toxic effects of the systemic chemotherapy. IP chemotherapy has been investigated in clinical trials including the Gynecologic Oncology Group (GOG-172) phase III trial that showed approximately 16 months improvement in the median survival of women treated with a combination intravenous (IV) and IP chemotherapy compared to those treated with IV chemotherapy alone, but on the expense of the increased risk of toxicity and catheter-related complications. Based on the results of this as well as other trials, the National Cancer Institute (NCI) issued a clinical announcement in 2006 recommending that women with optimally debulked stage III ovarian cancer and their physicians consider a combination of intravenous (IV) and intraperitoneal chemotherapy (IPC). IPC has limited tissue penetration and may be indicated only following optimal resection of peritoneal disease when there is either no or very small macroscopic disease remaining (<1.0 cm). The use of IPC however, is controversial and is not widely accepted by the medical community as a standard treatment in the management of advanced epithelial ovarian cancer, due to its high toxicity, catheter-related complications, and negative impact on the patients' quality of life (Almadrones 2007, Trimble 2008, Runowicz 2008, Lim 2009, Spiliotis 2011, Tentes 2012, Chan 2012, de Bree 2012).

In the last two decades researchers investigated the synergistic effect of combining regional hyperthermia and intraperitoneal chemotherapy (hyperthermic IPC, or HIPEC) together with the CRS. Theoretically, in addition its tumoricidal effect, hyperthermia increases the permeability of the drug to the tumor cells (up to 5-6 mm compared to 2-3 mm of the conventional IPC). Hyperthermia may also alter the cellular metabolism, and cellular drug pharmacogenetics. A potential advantage of administrating HIPEC intraoperatively is providing superior and homogenous exposure of the seroperitoneal surface to the drug and heat before the development of adhesions. The disadvantage of HIPEC compared to IPC is the shorter tumor exposure time and its administration only once during the surgery or at the most twice when a secondary surgery is performed (de Bree 2012).

Other primary peritoneal malignancies or secondary dissemination from gastrointestinal tract or other pelvic organs.

Primary peritoneal malignancies such as peritoneal mesothelioma or papillary serous carcinoma are rare, but peritoneal dissemination form gastrointestinal tract and ovarian carcinomas are common. In the past these carcinomatosis were regarded as terminal and the patients were only treated with palliative measures. Over the last 30 years however, novel more aggressive treatment strategies that combine cytoreductive surgery with intraperitoneal (IP) chemotherapy were explored. Hyperthermic intraperitoneal chemotherapy (HIPEC) and early postoperative IP chemotherapy emerged as the most commonly used IP adjuvant therapies. Theoretically cytoreductive therapy treats the macroscopic disease, and intraperitoneal chemotherapy (IP) treats the microscopic disease and the residual or free tumor cells left in the peritoneal cavity after surgery, in order to prevent and control peritoneal dissemination. IP chemotherapy optimizes the process as heat has direct cytotoxic effects on cancer cells and increases the cytotoxicity and penetration of certain cytotoxic drugs. Hyperthermia is also believed to modulate the cells of the innate and adaptive immune system, thereby improving effectiveness (Shen 2009, Glehen 2010, Mizumoto 2012, Sun 2012, MI 2013).

Medical Technology Assessment Committee (MTAC)

Intraperitoneal Hyperthermic Chemotherapy (IPHC) 04/02/2007: MTAC REVIEW

Evidence Conclusion: Prevention of peritoneal carcinomatosis Two randomized controlled trials from Japan, conducted among patients who underwent surgery for T2-T4 gastric carcinoma with serosal involvement, found a significant benefit from including HIPEC treatment. The study with the stronger methodology (Yonemura et al., 2001) found a higher estimated 5-year survival in the group receiving cytoreduction and HIPEC (61%), compared to two other groups (cytoreduction and normothermic intraperitoneal chemotherapy, 44%; and surgery alone 42%). The other RCT (Fujimoto et al., 1999) had poorly described methodology, and also found a significantly higher estimated survival rate in a group receiving cytoreduction plus HIPEC compared to surgery alone. The first study had a minimum of 2.4 years of follow-up; length of follow-up was not reported in the Fujimoto study. Findings from studies on Japanese gastric cancer may not be generalizable to the United States. *Treatment of peritoneal carcinomatosis* There is evidence from one reasonably valid randomized controlled trial that HIPEC is beneficial as a treatment for peritoneal carcinomatosis (Verwaal et al., 2003). The study, which included 105 patients with histologically proven peritoneal metastases of colorectal adenocarcinoma, compared an

experimental treatment (cytoreduction and HIPEC, plus adjuvant chemotherapy) to standard treatment (outpatient chemotherapy, surgery only if necessary). After a median follow-up of 22 months, the survival rate was significantly higher in the experimental treatment group (56% vs. 39%). Sub-group analyses suggest that survival was lower in patients with extensive residual disease or involvement of more than 5 regions of the abdominal cavity. A case series by the same research group found an estimated one-year survival of 75% and three-year survival of 28% with the experimental treatment. There were no long-term survival data for the standard treatment group. The evidence base would be strengthened with additional comparative studies.

<u>Articles</u>: *Prevention of peritoneal carcinomatosis*_Three RCTs were identified: all were conducted by Japanese investigators. The two trials with the larger sample sizes (n=139 and n=141) were critically appraised. The third study was smaller (n=82) and had limitations including a non-significant finding with no discussion of statistical power. _*Citations for the reviewed studies are as follows:* Yonemura Y, deAretxabala X, Fukimura T et al. Intraoperative chemohyperthermic peritoneal perfusion as a adjuvant to gastric cancer: Final results of a randomized controlled study. Hepato-Gastroenterology 2001; 48: 1776-1782. See <u>Evidence Table.</u> Fujimoto S, Takahashi M, Mutou T et al. Successful intraperitoneal hyperthermic chemoperfusion for the prevention of postoperative peritoneal recurrence in patients with advanced gastric carcinoma. Cancer 1999; 85: 529-534. See <u>Evidence Table.</u> *Treatment of peritoneal carcinomatosis:*

One RCT from the Netherlands was identified and critically appraised (Verwaal et al., 2003). There have also been a number of case series, most had sample sizes under 100. The largest case series was a multicenter study by Glehen et al., 2004 and included 506 patients. This study was limited in that it combined data from different centers that had different protocols and patient populations. All of the centers used perioperative intraperitoneal chemotherapy, but it appears that not all used hyperthermic treatment. As a result, the Glehen article was excluded from further review. The next largest case series available in English was by Verwaal et al., 2005. This article reported long-term follow-up on 117 patients, 48 of whom were included in the 2003 RCT, and was critically appraised. *The two studies reviewed were as follows:* Verwaal VJ, van Ruth S, de Bree E et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol 2003; 21: 3737-3743. See Evidence Table. Verwaal VJ, van Ruth S, Witkamp A et al. Long-term survival of peritoneal carcinomatosis of colorectal origin. Ann Surg Oncol 2005; 12: 65-71. See Evidence Table

The use of intraperitoneal hyperthermic chemotherapy (IPHC) in the treatment of peritoneal carcinomatosis does not meet the *Kaiser Permanente Medical Technology Assessment Criteria*.

Intraperitoneal Hyperthermic Chemotherapy (IPHC) 10/16/2012: MTAC REVIEW

Evidence Conclusion: Verwaal and colleagues (2003, 2008) conducted a randomized controlled trial in one center in the Netherlands to compare the efficacy of cytoreductive surgery (CRS) and HIPEC versus systemic chemotherapy and surgery in the management of peritoneal carcinomatosis of colorectal origin. The study randomized 105 patients younger than 71 years of age, with peritoneal metastases of CRC to undergo CRS in combination with hyperthermic intraperitoneal therapy (HIPEC) or systemic chemotherapy and surgery. The authors published the results after a median of 21.6 months, and later after an extended follow-up of 91 month. The initial results of the trial showed a significantly higher median survival of the patients treated with CRS and HIPEC vs. standard therapy (22.3 months and 12.6 months respectively). After 8-years of follow-up, 9 patients were still alive. This long-term follow-up showed a median progression-free survival of 12.6 months in the CRS and HIPEC group and 7.7 months in the standard therapy group. Subgroup analyses of the results showed that patients with 6-7 regions had a very poor survival (median 5.4 months) compared to those with 0-5 regions (median >29 months), and that survival was significantly higher with success of surgical procedure i.e. complete cytoreduction. The trial had generally valid methodology; it was randomized and controlled. However, it was conducted over a decade ago and significant progress in chemotherapy has been accomplished since then. The systemic therapy with 5-FU and leucovorin used in the control group is outdated, and mitomycin-C, the HIPEC drug used in the experimental group is not the most effective drug for used for CRC. In addition, the experimental group underwent both cytoreduction and HIPEC and it is difficult to determine whether the survival benefit was due to one of the two treatment modalities or their combination, and whether heating of the chemotherapy had an additive effect to the IP therapy.

<u>Articles</u>: The search revealed one meta-analysis, one randomized controlled trial with long-term follow-up, and a number of observational studies with or without comparison groups. The randomized trial was selected for critical appraisal. The meta-analysis pooled the results of that RCT together with a retrospective study and was not critically reviewed. Verwaal VJ, van Ruth S, de Bree E, et al Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol 2003;21:3737-3743 See <u>Evidence Table</u>. Verwaal VJ, Bruin S, Boot H, et al 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy

versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol.2008; 15:2426-2432 See Evidence Table.

The use of intraperitoneal hyperthermic chemotherapy (IPHC) in the treatment of peritoneal carcinomatosis does not meet the *Kaiser Permanente Medical Technology Assessment Criteria*.

02/11/2013: MTAC REVIEW

Evidence Conclusion: Overall the results of the published observational studies suggest, but do not provide sufficient evidence to conclude, that HIPEC is feasible and may improve survival in women with advanced ovarian cancer. Due to the inherent limitations of the observational studies, it is hard to ascertain the extent at which the reported survival benefit resulted from selection bias, and whether it was due to the intraoperative intraperitoneal therapy, the hyperthermia, the aggressive cytoreduction therapy, the systemic chemotherapy regimens used, or other confounding factors. It is also difficult to determine whether complications occurring after major cytoreduction surgery and HIPEC were due to the surgery itself or the HIPEC. Only well conducted, adequately powered, randomized controlled trials with long-term follow-up may determine the net clinical benefit of incorporating HIPEC in the management of patients with ovarian cancer. Currently, at least three randomized controlled trials are ongoing to investigate the efficacy and safety of adding HIPEC to primary or secondary cytoreductive surgery in women with stage III or relapsing ovarian cancer. Among these trials are the OVIHIPEC trial in the Netherlands, the CHIPOR trial in France, and the HORSE trial in Italy. Their results may answer many questions about the role of HIPEC in treating ovarian cancers, its indications, efficacy, morbidity, and net clinical benefits.

<u>Articles</u>: The literature search did not reveal any randomized controlled trial that compared the efficacy of HIPEC to standard therapy for treatment of women with ovarian cancer. The published studies were mainly prospective or retrospective observational studies. The search identified one retrospective review and three case series that compared the outcomes of patients undergoing HIPEC to those who refused to undergo the procedure or did not receive the HIPEC therapy for various other reasons.

Two case series that compared the outcomes of patients who received HIPEC to those of patients who did not were selected for critical appraisal. Spiliotis J, Vaxevanidou A, Sergouniotis F et al. The role of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of recurrent advanced ovarian cancer: a prospective study. J Buon 2011; 16:74-75. See <u>Evidence Table</u>. Ryu KS, Kim JH, et al. Effects of intraperitoneal hyperthermic chemotherapy in ovarian cancer. Gynecol Oncol. 2004; 94:325–332. See <u>Evidence Table</u>.

The use of intraperitoneal hyperthermic chemotherapy (IPHC) in the treatment of ovarian cancer does not meet the Kaiser Permanente Medical Technology Assessment Criteria.

Intraperitoneal Hyperthermic Chemotherapy (IPHC) 08/19/2013: MTAC REVIEW

Evidence Conclusion: There is some evidence from small RCTs conducted in Asia, and meta-analyses pooling their results that cytoreductive surgery combined with intraperitoneal hyperthermic chemotherapy may improve the overall survival in patients with advanced gastric cancer without macroscopic

peritoneal carcinomatosis or distant metastases. There is insufficient evidence to determine the subgroup of patients with gastric cancer who would benefit most from HIPEC as the effectiveness of HIPEC may depend on size and depth of micrometastases. There is insufficient evidence to determine the optimal regimen for HIPEC. There is insufficient evidence to determine the efficacy of HIPEC in patients with peritoneal carcinomatosis from gastric cancer. There is insufficient evidence to determine the safety of HIPEC or its effect on the quality of life in patients with gastric cancer with or without dissemination to the peritoneum. There is insufficient evidence to determine the safety and efficacy of HIPEC for the treatment of other peritoneal malignancies, whether of a primary origin or peritoneal carcinomatosis secondary to cancer in other organs within the peritoneal cavity.

<u>Articles</u>: The literature search for studies on the efficacy and safety of HIPEC in patients with pseudomyxoma peritonei, GI cancers (other than colorectal cancer) identified two recent meta-analyses of RCTs, two older ones, and a phase III RCT on HIPEC for patients with gastric cancer. The search did not reveal any RCTs that evaluated HIPEC for primary peritoneal malignancies, or other peritoneal disseminations from other cancers evaluated in this review. The published studies were mainly small prospective or retrospective case series with no comparison or control groups. The two more recent meta-analyses and the RCT that evaluated the efficacy and safety of HIPEC for gastric carcinoma were selected for critical appraisal.

Mi DH, Li Z, Yang KH, et al. Surgery combined with intraoperative hyperthermic intraperitoneal chemotherapy (IHIC) for gastric cancer: a systematic review and meta-<u>analysis</u> of randomized controlled trials. Int J Hyperthermia. 2013; 29:156-167. <u>See Evidence Table</u>. Sun J, Song Y, Wang Z, et al. Benefits of hyperthermic intraperitoneal chemotherapy for patients with serosal invasion in gastric cancer: a meta-analysis of the © 2010 Kaiser Foundation Health Plan of Washington. All Rights Reserved. <u>Back to Top</u> randomized controlled trials. BMC Cancer. 2012; 12:526. <u>See Evidence Table</u>. Yang XJ, Huang CQ, Suo T, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase III randomized clinical trial. Ann Surg Oncol. 2011; 18:1575-1581. <u>See Evidence Table</u>.

The use of intraperitoneal hyperthermic chemotherapy (IPHC) in the treatment of Gastric, DMPM, and PMP cancer does not meet the *Kaiser Permanente Medical Technology Assessment Criteria*.

Applicable Codes

<u>Medicare</u> – Considered not medically necessary for use of hyperthermia with chemotherapy <u>Non-Medicare</u> - Considered Medically Necessary when criteria in the applicable policy statements listed above are met:

CPT [®] or HCPC Codes	Description
77605	Hyperthermia, externally generated; deep (ie, heating to depths greater than 4 cm)
96547	Intraoperative hyperthermic intraperitoneal chemotherapy (HIPEC) procedure, including separate incision(s) and closure, when performed; first 60 minutes (List separately in addition to code for primary procedure)
96548	Intraoperative hyperthermic intraperitoneal chemotherapy (HIPEC) procedure, including separate incision(s) and closure, when performed; each additional 30 minutes (List separately in addition to code for primary procedure)

*Note: Codes may not be all-inclusive. Deleted codes and codes not in effect at the time of service may not be covered.

**To verify authorization requirements for a specific code by plan type, please use the Pre-authorization Code Check.

CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). HCPCS codes, descriptions and materials are copyrighted by Centers for Medicare Services (CMS).

Date Created	Date Reviewed	Date Last Revised
04/19/2007	04/02/2007, 04/16/2007 ^{MDCRPC} , (reinitiated policy document) 11/06/2012 ^{MDCRPC} , 03/05/2013 ^{MDCRPC} , 10/01/2013 ^{MPC} , 01/07/2014 ^{MPC} , 11/04/2014 ^{MPC} , 09/01/2015 ^{MPC} , 07/05/2016 ^{MPC} , 05/02/2017 ^{MPC} , 03/06/2018 ^{MPC} , 03/05/2019 ^{MPC} , 03/03/2020 ^{MPC} , 03/02/2021 ^{MPC} , 03/01/2022 ^{MPC} , 03/07/2023 ^{MPC} , 08/06/2024 ^{MPC}	08/09/2024

^{MDCRPC} Medical Director Clinical Review and Policy Committee ^{MPC} Medical Policy Committee

Revision History	Description
08/02/2016	Removed the diagnosis, Pseudomyxoma Peritonei (PMP), from the non-covered list
05/22/2020	Added CPT codes 77600, 77610, 77615, 77620 and removed 96446.
03/01/2022	Added ovarian cancer to the list of medically necessary diagnoses.
04/25/2024	Updated applicable codes 96547 and 96548 effective 1/1/2024. Removed codes 77600, 77610,
	77615, 77620.
08/09/2024	Added new CPT codes, effective 1/1/2024